
17

Rtkaller: State-aware Task Generation for RTOS Fuzzing

YUHENG SHEN, HAO SUN, YU JIANG, HEYUAN SHI ∗, and YIXIAO YANG ∗, KLISS, BNRist,
School of Software, Tsinghua University, China
WANLI CHANG, Hunan University, China

A real-time operating system (RTOS) is an operating system designed to meet certain real-time requirements.
It is widely used in embedded applications, and its correctness is safety-critical. However, the validation of
RTOS is challenging due to its complex real-time features and large code base.

In this paper, we propose Rtkaller, a state-aware kernel fuzzer for the vulnerability detection in RTOS.
First, Rtkaller implements an automatic task initialization to transform the syscall sequences into initial
tasks with more real-time information. Then, a coverage-guided task mutation is designed to generate those
tasks that explore more in-depth real-time related code for parallel execution. Moreover, Rtkaller realizes a
task modification to correct those tasks that may hang during fuzzing. We evaluated it on recent versions
of rt-Linux, which is one of the most widely used RTOS. Compared to the state-of-the-art kernel fuzzers
Syzkaller and Moonshine, Rtkaller achieves the same code coverage at the speed of 1.7X and 1.6X , gains an
increase of 26.1% and 22.0% branch coverage within 24 hours respectively. More importantly, Rtkaller has
confirmed 28 previously unknown vulnerabilities that are missed by other fuzzers.

CCS Concepts: • Security and privacy → Virtualization and security; Domain-specific security and
privacy architectures; Vulnerability scanners; • Computer systems organization→ Real-time operat-
ing systems.

Additional Key Words and Phrases: Fuzz Testing, RTOS, Vulnerability Detection, Task Generation

ACM Reference Format:
Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli Chang. 2021. Rtkaller: State-aware
Task Generation for RTOS Fuzzing. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 17 (July 2021), 22 pages.
https://doi.org/10.1145/3477014

1 INTRODUCTION
A Real-time Operating System (RTOS) is an operating system designed to serve those applications
with certain real-time requirements and has demonstrated its growing importance in various
industrial scenarios. As the RTOS is responsible for system-wide resource allocation and program
scheduling, any vulnerabilities within the RTOS can jeopardize the system’s security, leading
the entire system to crash. However, the growing demand for real-time performance results in
increasingly complex code logic, making new bugs frequently introduced and reported. These
bugs can take many forms, ranging from simple memory corruptions to complex real-time errors.
∗Heyuan Shi and Yixiao Yang are correspondence authors.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Embedded Software (EMSOFT), 2021.
Authors’ addresses: Yuheng Shen, shenyh20@mails.tsinghua.edu.cn; Hao Sun, sun-h20@mails.tsinghua.edu.cn; Yu Jiang,
jiangyu198964@126.com; Heyuan Shi, hey.shi@foxmail.com; Yixiao Yang, yangyixiaofirst@163.com, KLISS, BNRist, School
of Software, Tsinghua University, Beijing, China; Wanli Chang, Hunan University, China, wanli.chang.rts@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1539-9087/2021/7-ART17 $15.00
https://doi.org/10.1145/3477014

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

HTTPS://ORCID.ORG/0000-0002-2667-5431
https://doi.org/10.1145/3477014
https://orcid.org/0000-0002-2667-5431
https://doi.org/10.1145/3477014

17:2 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

Many widely used RTOS, such as FreeRTOS [31], and rt-Linux [2], have witnessed hundreds of bug
reports in recent years, incurring severe consequences. Therefore, it is pivotal to ensure the code
qualities of RTOS through vulnerability detection.

However, manually identifying bugs in the massive code base of an RTOS is challenging, as such
an approach cannot adequately simulate the actual runtime situation and thoroughly explore the
system states of an RTOS. Fuzzing [3, 11, 25] is a prominent approach to ensure the correctness of
code. It provides random inputs to explore the program’s abnormal behaviors. Some cutting-edge
fuzzers, such as AFL [7] and Peach [32], have located millions of vulnerabilities on a wide range
of real-world applications. Due to the tremendous performance of fuzzing, many researchers are
attempting to apply fuzzing on operating systems testing.
The generic kernel fuzzing method tends to test the operating system interfaces based on the

predefined system call descriptions (syscall SPEC) with randomly generated parameters. This
methodology significantly increases kernel vulnerability detection efficiency and has exploited
many critical kernel bugs [34]. Syzkaller [8] as a well-known kernel fuzzing tool developed by
Google, represents such implementation. However, it is difficult to sufficiently expose the bugs in
RTOS through the generic kernel fuzzing method due to the real-time related features. Specifically,
for effectively fuzzing RTOS, there are mainly two challenges.
For the first challenge, the syscall SPEC used in the generic kernel fuzzing approach cannot

convey detailed real-time information. In particular, some abnormal behaviors that are not incurred
from the code errors may be mistaken as a crash due to the real-time features of RTOS. For
instance, a process may be mistaken as a crash by unexpected abortion when other processes
occupy some resources it requires for a long time. Since syscall SPEC only defines the system
interface descriptions, it is incapable of conveying real-time related information such as priority
and execution states. The lack of such information can lead to many false crashes during the fuzzing
process, which seriously undermined the fuzzing speed.
For the second challenge, it is difficult for existing fuzzing methods to test real-time related

code effectively. Many vulnerabilities are buried deep in the code logic and often require complex
syscall combinations even under concurrent conditions to be triggered. However, the generic kernel
fuzzing methods use overall code coverage to guide the test cases mutation and execute test cases
in single-thread mode. Such approaches often result in failing to generate those test cases that can
effectively test the RTOS, affecting the fuzzing performance.
To bridge the gap between fuzzing with RTOS vulnerability detection, we promote Rtkaller,

a state-aware kernel fuzzer with coverage guidance that aims to trigger memory-related bugs
(e.g. stack-overflow and use-after-free) extensively found in RTOS. Specifically, to express more
real-time information, Rtkaller initializes tasks as test cases, each containing a concurrency
intensity and multiple programs with priority compiled from the generic syscall SPEC. Besides,
Rtkaller checks the syscalls of each task and further modifies those tasks that may not be invoked
for long periods, reducing system hang caused by real-time requirements. To trigger more real-time
related operations and test deep into RTOS, we use shared memory to synchronous the runtime
information, such as coverage and exit code, to guide taskmutations for further execution. Rtkaller
implements parallel execution, which spawns multiple executors from the fuzzer and executes
programs within the task simultaneously to improve the throughput.

For evaluation, we compared Rtkallerwith two state-of-the-art kernel fuzzers: Syzkaller [8] and
Moonshine [17] on several versions of real-time Linux kernels, which are one of the most widely
used RTOS. The results demonstrate that Rtkaller achieves a higher branch coverage averagely
by 26.1% and 22.0% , speedup about 1.7X and 1.6X respectively, when reaching the same coverage.
Along with the coverage improvement, we confirmed 28 previously unknown vulnerabilities. In
summary, this paper makes the following contributions:

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:3

• To fuzz deep into RTOS real-time related code and discover its unknown vulnerabilities, we
propose a state-aware fuzzing method capable of generating higher quality tasks as input.

• We implement Rtkaller1, a state-aware RTOS fuzzer. Using the generic syscall SPEC, it
performs a task-based test case initialization, mutation, modification and parallel execution.
Meanwhile, it output the coverage and vulnerability information for coverage guidance.

• We apply Rtkaller on typical RTOS for real practice, and it achieves a higher branch coverage
with a faster speed and detects more vulnerabilities than the state-of-the-art kernel fuzzers.
In total, it has confirmed 28 previously unknown vulnerabilities.

This paper is organized as follows. We provide the necessary backgrounds and the challenges
of RTOS fuzzing in Section 2. Then we demonstrate the detailed design and implementation of
Rtkaller in Section 3. The evaluation of Rtkaller can be seen in Section 4, and the related work
is introduced in Section 5. Last we summarize this paper in Section 6.

2 BACKGROUND
2.1 Real-time Operating System
RTOS [30] is an operating system designed to serve those applications with real-time requirements
and have a wide range of applications in industrial control, aerospace, and power systems. In
contrast to a general OS that focuses on the overall throughput, the main goal of an RTOS is
to ensure a process will complete by a specific deadline. Hence, an RTOS is desired when there
are multiple processes and devices, especially when processes’ timing is more important than
the system performance. Besides, an RTOS application usually consists of multiple independent
tasks; each task has an assigned priority, which indicates its corresponding urgency. In general,
an RTOS implements a preemptive multi-tasking algorithm; by using a periodic interrupt routine,
it will choose the task with the highest priority to execute at each round. To satisfy the real-time
requirements, the RTOS needs to be predictable and deterministic.

RunningReady

Suspended

Task
Create

Blocked

With Highest-
priority

Without
Highest-priority

Without Necessary
Resources

Timeout

With Resources
Without Highest-priority

Timeout

Timeout Resume

Fig. 1. A Finite State Machine of the Task State Transition

As shown in Fig.1, each task only stays within a small state set, including running, ready, blocked,
and suspended; it will transfer from one state to another during execution. In concrete, the default
state of a task is ready; it will enter the running state if it has the highest priority. If a running
1Implementation details are available through https://github.com/Rtkaller/Rtkaller

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:4 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

task no longer has the highest priority, it will back to the ready state; if a task lacks the necessary
resources, it will transfer to the blocked state; furthermore, for those tasks that have run out of
time slices, it will switch to the suspended state and wait for further resume.

2.2 Coverage-guided Kernel Fuzzing
Fuzzing is an automatic software testing technique, its core idea is generating random test cases
as input to monitor the abnormal behavior of the System Under Test (SUT). As an effective
vulnerability detection technique, fuzzing has successfully located millions of critical vulnerabilities
among various programs. To achieve a higher coverage and test the SUT more thoroughly, many
contemporary fuzzers implement the coverage-guided fuzzing method. Its primary intention is to
give those seeds that trigger new coverage from previous execution a higher chance of mutation,
so that the fuzzer can increase the probability of finding new paths.
The OS Kernel represents a critical part of the modern software, often too large to be bug-

free. To ensure the kernel’s code quality, it is necessary to deploy fuzzing on the kernel testing.
Some advanced coverage-guided kernel fuzzers, such as MoonShine [17], Syzkaller [8], use syscall
descriptions as fuzzing input and exploit the coverage information as guidance.

variable
declaration

header file

Syscall SPEC Generation

variable
declaration

OS Kernel
(instrumented)

Coverage
Collection Executor

Initialization Muation

Execution

coverage test input

Crash

Fig. 2. Workflow of Syzkaller. It uses the syscall SPEC as input to model the kernel’s interfaces. Then based
on the SPEC, Syzkaller initializes test cases and executes them on the kernel under test. Furthermore,
Syzkaller will collection the execution information such as coverage to guide further mutation. If any crash
happens, it will generate a crash report.

Taking Syzkaller as an example, its overall workflow is shown in Fig. 2. Syzkaller uses syscall
SPEC to generate executable programs as test cases. Then it uses kcov[35] to collect coverage
information from the kernel. Suppose that the test case in the last round triggers new coverage,
Syzkaller will give this test case a higher mutation probability. Also, if any crash happens, Syzkaller
will record the crash message and try to reproduce it. By now, Syzkaller has successfully located
significant numbers of critical vulnerabilities within various kernels.

2.3 Challenges of RTOS Fuzzing
Difficulties of Real-time Information Encoding. It is challenging for generic kernel fuzzers to
perceive task states and express real-time information during fuzzing. However, since the state is
an essential part of the RTOS, it is necessary to be state aware when testing RTOS. For instance,
some tasks may not be invoked for a long time due to their low priorities, resulting in an early
abort, further leading to a false crash or even some catastrophic consequences.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:5

Listing 1 shows an example of a task hang caused by two tasks. As illustrated in Listing 1, Task A
and Task B both attempt to access the same file in a mutex manner through the syscall 𝑜𝑝𝑒𝑛() and
𝑤𝑟𝑖𝑡𝑒 (). However, it is worth noting that Task A lacks a syscall 𝑐𝑙𝑜𝑠𝑒 (). In a concurrency scenario,
to ensure the correctness of the file’s content, the kernel will enable a mutex mechanism to limit
the number of tasks to access the resource. Under this circumstance, if Task A has a higher priority
than Task B, Task A will execute before Task B. However, at this point, if Task A continues to
occupy this file and does not release it, Task B will remain in the blocked state, eventually get hang.

Listing 1. Task Description with Different States

1 //Task A
2 int fd = open(FILENAME , O_CREAT | O_RDWR);
3 if(flock(fd, LOCK_NB | LOCK_EX) == 1) {
4 write(fd, CONTENT);
5 }
6 //Task B
7 int fd = open(FILENAME , O_CREAT | O_RDWR);
8 if(flock(fd, LOCK_NB | LOCK_EX) == 1) {
9 write(fd, CONTENT);
10 }
11 close(fd);

Such example are cumbersome to handle during RTOS fuzzing, as the fuzzer may mistake such
hang as a crash and spend much time reproducing it. It significantly increases the fuzzing overhead
and slows down the fuzzing speed. Thereby, Rtkaller first proposes to use execution priority to
manipulate the task execution order, then monitors the task generation process and modifies the
task that could get hang.

Difficulties of Real-time Related Operations Triggering. The current kernel fuzzers may
found it challenging in triggering some of the complex vulnerabilities within the RTOS. Most
kernel fuzzers adopt a snapshot recovery mechanism and execute test cases in a single-thread
manner. In detail, the fuzzers will reset the entire system back to its initial state when a test case
is completed. However, as the RTOS is designed for multi-tasking, this single-threaded fuzzing
method is incapable of adequately triggering real-time related operations within the RTOS, making
it hard to trigger some vulnerabilities can only be triggered in a complicated situation.

Fig. 3. An exploitation example of CVE-2018-1000200. Two tasks both access the same memory area due to
an unchecked memory operations, causing an Out-Of-Memory to occur.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:6 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

Here we use CVE-2018-1000200 [33] as a motivating example, Fig. 3 shows an out-of-memory
(OOM) bug in Linux’s memory module. This vulnerability is caused by uncontrolled memory
operations. In detail, Task A and Task B both access the same virtual memory area in the system.
When Task A executes, it calls the function 𝑃𝑎𝑔𝑒𝑀𝑙𝑜𝑐𝑘𝑒𝑑 () in the yellow section, line 469, to lock
the memory. However, when Task B executes synchronously, it may access this memory area before
the lock flag is set by 𝑃𝑎𝑔𝑒𝑀𝑙𝑜𝑐𝑘𝑒𝑑 (), as shown in the green section, line 1232. At this point, if
both tasks write to the same memory area, a large amount of data may write into this memory
space, in which the OOM vulnerability will then triggered. Such vulnerabilities are usually hard
to be detected in RTOS. To better mitigate these problems, Rtkaller implements a task-based
parallel execution that performs coverage-guided fuzzing in a multi-threaded manner to trigger
more real-time related operations and exploit the potential vulnerabilities more efficiently.

3 SYSTEM DESIGN
The design of Rtkaller is presented in Fig. 4. It utilizes the traditional syscall SPEC as input,
which is also adapted by existing kernel fuzzers such as Syzkaller[8], KAFL[12] and Moonshine[17].
Instead of generating executable programs, Rtkaller generates tasks for the parallel execution and
monitors the crashes. Besides, for an RTOS kernel under test, we perform targeting instrumentation
with sanitizers to drive the fuzzing process towards those real-time related code and support
more types of vulnerabilities detection. The fuzzing engine contains three major modules: task
initialization, task generation, and parallel execution.

syscall
sequence

Crash

Task Generation

coverage test input

variable
declaration

header file

RTOS
(instrumented)

Syscall SPEC Task Initialization
Task

Transformation

Task
Mutation

Task
Modification

Parallel Execution

Tasks

Task
Synchronization

Executors

Fig. 4. Overview of Rtkaller. In task initialization, we use syscall SPEC to generate tasks, which can be
directly taken from the existing specification file of Syzkaller and Moonshine without modification. Then, we
perform a task modification to amend those tasks that may hang during fuzzing. For parallel execution, it
contains several executors, which will send test cases into instrumented RTOS and return the crash report if
any crash happens. It will also collect the execution information such as coverage in task synchronization;
later, the coverage information will send back to the task generation module to guide further task mutation.

For task initialization module, Rtkaller transforms the syscall SPEC to tasks automatically,
accompanied with runtime priorities and a concurrency intensity. By explicitly combining the
execution priority with the task, it allows us to express more real-time information during the
fuzzing process. For task generation module, based on the coverage information, Rtkaller proposes

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:7

a task-based mutation to generate more refined tasks. Besides, by analyzing each syscall’s impact
on the overall system execution, the task modification mechanism will modify those tasks that
may hang during fuzzing, ensuring that every program within a task executes correctly. For the
parallel execution module, it implements a fork server-like execution mechanism. Each time a
fuzzer assigns the programs within a task to several executors for multi-thread execution.

3.1 Task Initialization
As demonstrated in the Section 2.3, the vulnerabilities in RTOS are hard to manifest due to insuffi-
cient expression of real-time information and inadequate triggering for real-time related operations.
Rtkaller is designed to provide the test cases with more real-time related features like scheduling
and priority. Concretely, it leverages the task description to introduce tasks into RTOS fuzzing,
then it performs the task transformation to generate initial seeds for the fuzzing.

Task Definition. In the traditional kernel fuzzing process, the fuzzer uses a single program as
input, compiled from a single syscall SPEC. However, due to the lack of real-time information such
as priority, the syscall SPEC often fails to efficiently activate the real-time related behaviors.

To better exploit the real-time features in RTOS, we propose using tasks for execution. A task is an
internal data structure within Rtkaller, which contains a syscall SPEC sequence, runtime priorities,
and a current intensity. The syscall SPEC is used to describe the kernel’s interfaces, comprising the
definition of a syscall sequence with corresponding parameters. The runtime priorities indicate
each program’s execution urgency within the task, which is used to manipulate the programs’
execution order. The intensity indicate the number of the syscall sequences. They can be initialized
randomly and customized automatically.

Listing 2. An Example of Task Definition

1 Task:
2 int intensity = 5
3 int[] priority = [2, 4, 56, 23, 6]
4 Prog[] programs
5 Prog:
6 resource io_ctx[intptr]
7 io_setup(n int32 , ctx ptr[io_ctx])
8 io_destroy(ctx io_ctx)

A detailed example of automatically transformed task is presented in Listing 2. The intensity
shows how many programs a task will encapsulate, as shown in line 2, there will be five different
programs within the task. Typically, the higher the intensity of a task, the more programs it will
execute concurrently and the more likely it is to induce complex real-time operations. Also, to limit
the memory consumption, increasing the fuzzer’s throughput, the concurrent intensity generally
does not exceed 10. There will be a corresponding priority for each program within the task that
indicates its execution order, as shown in line 3. Since RTOS follows the preemptive algorithm, the
higher a program’s priority is, the sooner it will be executed. Also, different combination of priority,
incurring different execution order, which may lead to diverse real-time operations. Moreover,
the 𝑃𝑟𝑜𝑔 array is used to store the to-be-executed programs compiled from the predefined syscall
sequence, the number of programs is the same as the 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 reveals.

Task Transformation. Based on the existing syscall SPEC, we will generate serials of programs,
and integrate these programs with a concurrency intensity and runtime priorities automatically. As
shown in Algorithm 1, Rtkaller utilizes the syscall SPEC as initial input, and it can be viewed as a
syscall SPEC array, each element contains the definition of a syscall sequence. Specifically, it will

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:8 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

first randomly generate the concurrent intensity to indicate the number of the syscall sequences
as shown in line 2. Based on this intensity and the SPEC, Rtkaller will then uses the function
𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛() to generate executable programs, which is consist of a syscall choose and an
arguments generation process, as shown in lines 5-6 and lines 7-12. Upon obtaining the programs,
Rtkaller will bestow the program a priority, as shown in line 6.

Algorithm 1: The Task Transformation Mechanism
Input: 𝑆 : syscall SPEC
Output: 𝑇 : Task

1 Algorithm
2 𝑇 .intensity = int_rand()
3 for 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 (0, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) do
4 prog = program_generation(𝑆[i])
5 𝑇 .prog = 𝑇 .prog ∪ prog
6 𝑇 .priority[i] = int_rand()
7 Procedure program_generation(𝑆)
8 for 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 (0,S.𝑠𝑖𝑧𝑒 ()) do
9 call = choose_syscall()

10 args_generation(call)
11 prog = prog ∪ call
12 return prog

3.2 Task Generation
During fuzzing, higher-quality test cases are always desired, as low-quality test cases tend to
increase the fuzzing overhead and cause many false crashes, leading to a low fuzzing efficiency. To
ensure the quality of test cases and further improve the fuzzing efficiency, Rtkaller proposes a
coverage guided task generation mechanism, including task mutation and task modification.

Task Mutation. Generic kernel fuzzing usually adopts a syscall mutation strategy, in which
they tend to mutate the syscalls’ parameters as well as randomly remove some non-vital syscalls.
However, when fuzzing a kernel with more emphasis on concurrency like the RTOS, such a strategy
may not be sufficient. The generic methods focus more on the diversity of syscalls’ parameter,
which fails to concern the impact on fuzzing efficiency with the different execution order. To
handle such issues, Rtkaller introduces the task mutation, which mutates the syscall SPEC and the
runtime priorities. In this way, we can greatly increase the diversity of real-time related operations,
improving the fuzzing efficiency. Algorithm 2 shows an overview of the task mutation process.

To improve the quality of the mutated test cases, we increase the mutation probability of those
tasks that are able to trigger new branches. We define _, which is a constant that makes the
probability of 𝑆𝑖 converge gradually to 1. For a test case 𝑆𝑖 , we record whether 𝑆𝑖 finds new coverage
in round i as𝑋𝑖 , assign𝑋𝑖 as 1 if it does, 0 otherwise. Initially, the mutation probability P is randomly
generated and will be updated based on subsequent execution, as shown in line 3. The mutation
probability for seed 𝑆𝑖 is:

𝑃 (𝑆𝑖) = _ · (1 − 1∑𝑛
𝑖=1𝑋𝑖

) (1)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:9

Algorithm 2: The Task-based Mutation Methodology
Input:𝑊 : WorkQueue
Input: 𝑇 : Task
Output: 𝑇 : Task

1 Algorithm
2 if𝑊 .size() == 0 then
3 p = float_rand(0, 1)
4 if p ≥ 0.5 then
5 𝑡𝑎𝑠𝑘_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑇)
6 𝑠𝑡𝑎𝑡𝑒_𝑎𝑚𝑒𝑛𝑑 (𝑇)
7 else
8 𝑠𝑡𝑎𝑡𝑒_𝑎𝑚𝑒𝑛𝑑 (𝑇)

9 Procedure 𝑡𝑎𝑠𝑘_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑇)
10 for 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 (0,T.𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) do
11 𝑇 .prog = syscall_mutation()
12 if 𝑇 .priority[i] ≥ 50 then
13 𝑇 .priority[i] = int_rand(0, 50)
14 else
15 𝑇 .priority[i] = int_rand(50, 100)

For a test case 𝑆𝑖 , if 𝑃 is bigger than 0.5, Rtkaller deems it as worth mutating and then performs
the mutation. Rather than only mutate the program that triggers new paths, we use the task as a
basic mutation unit and mutate all programs within it. In particular, after the execution, if a program
𝑃𝑟𝑜𝑔 triggers new coverage, Rtkaller will mark its corresponding task 𝑇𝑎𝑠𝑘 as interesting. Then
Rtkaller iterates and mutates every program in 𝑇𝑎𝑠𝑘 , as shown in lines 4-8. Since all mutated
programs triggered new coverage multiple times in previous executions, Rtkaller would have
a greater chance of finding new coverage. Also, to introduce more various real-time operations,
Rtkallerwill mutate each program’s execution priority, as shown in lines 11-15.More specifically, it
will raise the priority of lower-priority programs and lower the priority of higher-priority programs.
So, Rtkaller can disrupt the previous execution order and further explore RTOS behavior under
different scheduling scenarios.

Task Modification. As to RTOS fuzzing, it is challenging to ensure that the fuzzers can execute
each program successfully without any hang, which could severely undermine the efficiency. The
mutation strategy may randomly remove some syscalls, resulting in some programs terminated
with exceptions. Hence, Rtkaller applies a task modification algorithm, by analyzing each syscall’s
effect on the task’s states, to amend those test cases that may cause the task hang during fuzzing.

Algorithm 3 provides an overview of the task modification process. It takes a predefined syscall
pair𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡 and a task𝑇𝑎𝑠𝑘 as input. The task is initialized in the previous step, while the𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡
specifies some syscall pairs that may cause the task to hang. We then start to check every syscall
within the task, as shown in lines 1-3. By using a bitset 𝑖𝑛𝑑𝑒𝑥 , Rtkaller records the syscall’s search
results. In detail, Rtkaller pairs the syscalls in the 𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡 to determine whether a syscall may
contain potentially dangerous operations. Rtkaller will then mark the syscall in 𝑖𝑛𝑑𝑒𝑥 , as shown
in lines 4-9. After checking every syscall, if we find that the 𝑖𝑛𝑑𝑒𝑥 of the current task is not equal
to 0, we consider the task as hazardous, in which a syscall within the task might occupy some

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:10 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

Algorithm 3: The Task Modification Mechanism
Input: 𝑇 : Task
Input: 𝐿: CallList
Output: 𝑇 : Task

1 for 𝑝𝑟𝑜𝑔 ∈ 𝑇 do
2 index = ∅
3 for call ∈ prog do
4 if isPostiveMatch(call, CallList) then
5 pos = get_syscall_position(call)
6 index[pos] += 1
7 if isNegtiveMatch(call, CallList) then
8 pos = get_syscall_position(call)
9 index[pos] -= 1

10 for idx ∈ index do
11 if idx != 0 then
12 task.add_counter_syscall(prog, idx)

resources in the critical section and not release them, or it might be waiting to access resources for
a long time in future execution. At this stage, Rtkaller relies on the predefined𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡 , identifies
the corresponding syscall, and adds this corresponding syscall to the task as shown in lines 10-12.
To better illustrate our approach, we take Listing 3 and Listing 1 as an example. As Listing 3

shows, we define a bitset 𝑖𝑛𝑑𝑒𝑥 to record the pairing status of syscalls. We define a mapping from
a syscall name to an integer, with its pairing syscall assigning an opposite value. For instance,
Rtkaller will set 𝑜𝑝𝑒𝑛() as 1, then 𝑐𝑙𝑜𝑠𝑒 () will set as −1. When Rtkaller conducts a task amend
algorithm, we will attempt to find those syscalls defined in the 𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡 . Take task B in Listing 1
for example, Rtkaller first locates open(), then takes its mapping value as location index and sets
the corresponding location in 𝐼𝑑𝑥 as 1. When iterating to write(), Rtkaller will skip it because
we do not define it at 𝐶𝑎𝑙𝑙𝐿𝑖𝑠𝑡 . When Rtkaller meets close(), it will also get a match and acquire
close()’s corresponding value. Once the iteration is complete, if any bit in the 𝑖𝑛𝑑𝑒𝑥 is not equal to
0, Rtkaller will find the corresponding syscall and append it to the task. In our case, the first bit in
task A is not 0, so Rtkaller will find open()’s corresponding syscall close(), and append it to task A.

Listing 3. A Snippet of Predefined CallList

1 map <string ,int > CallList
2 CallList["open"] = 1
3 CallList["close"] = -1
4 CallList["mount"] = 2
5 CallList["unmount"] = -2

3.3 Parallel Execution
Task Based Execution. Rather than executing one test case at a time, Rtkaller adopts the
concurrent fuzzing method, which enables us to better simulate the real runtime scenarios of RTOS
and test the RTOS more thoroughly by introducing more real-time related operations.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:11

Algorithm 4: Parallel Execution of the Fuzzer
Input: 𝑇 : Task
Output: 𝐶: CrashList
Output:𝑊 : WorkQueue

1 PidList = ∅, InfoList = ∅
2 for prog ∈ 𝑇 do
3 𝑝𝑖𝑑 = generate_pid()
4 while pid ∈ PidList do
5 pid = pid++
6 PidList = PidList ∪ pid
7 spawn
8 exec = create_executor(pid, 𝑇)
9 set_priority(exec, 𝑇 .prio)

10 info = exec.execute_program(prog)
11 InfoList = InfoList ∪ info
12 sync
13 sort(InfoList)
14 for info ∈ InfoList do
15 if info.crash != ∅ & Lock(𝐶) then
16 𝐶 = 𝐶 ∪ info.crash
17 unLock(𝐶)
18 if (have_new_coverage(info)) then
19 𝑊 =𝑊 ∪ 𝑇

Rtkaller adopts a fork server-like architecture. In detail, the fuzzer acts as the fork server, which
is responsible for executors’ creation as well as the test case distribution. Meanwhile, each executor
is in charge of the program execution and the feedback information collection. In the fuzzing process,
to run multiple test cases simultaneously, Rtkaller first creates multiple executors from the fuzzer
and assigns the pre-generated execution priority to each executor. After it executed, to keep the
global execution information consistent with the local execution information, each executor merges
and synchronizes the generated runtime reports to the fuzzer. It allows Rtkaller to have higher
throughput and faster execution speed by executing each task asynchronously. Meanwhile, the
synchronization mechanism enables Rtkaller to update the global coverage information, identify
the test cases that trigger new coverage, and save them for further mutations.
Algorithm 4 demonstrates the basic idea of how Rtkaller implements the parallel execution.

Rtkaller uses the 𝐼𝑛𝑓 𝑜𝐿𝑖𝑠𝑡 to store the execution information and uses the 𝑃𝑖𝑑𝐿𝑖𝑠𝑡 for a thread
safety check. In detail, for a to-be-executed task, Rtkaller will iterates every program within it,
then it assigns a pid to each program 𝑝𝑟𝑜𝑔 and performs a pid conflict check, as Rtkaller needs
to protect each executor from crashes caused by pid conflicts by maintaining the uniqueness of
each pid, as shown in lines 3-6; Subsequently, it will start to create the executors in a thread-safety
manner and allocate each executor a program with a corresponding execution priority, as shown in
lines 7-9. After each executor finishes execution, it returns execution information 𝑖𝑛𝑓 𝑜 , as shown in
lines 10-13, which will then be added to the 𝐼𝑛𝑓 𝑜𝐿𝑖𝑠𝑡 . When all executions are complete, we refer

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:12 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

to each 𝑖𝑛𝑓 𝑜 in the 𝐼𝑛𝑓 𝑜𝐿𝑖𝑠𝑡 . Rtkaller identifies interesting tasks by determining if the current
task triggers any new crash or coverage, as shown in lines 14-19.

Feedback Collection and Synchronization. To ensure the proper implementation of the fork
server-like architecture, Rtkaller needs to ensure a correct and reliable data transfer in multi-
threaded scenarios. In detail, for each executor spawned from the fuzzer, it runs the to-be-executed
program separately. After the execution, Rtkaller identifies whether the program triggers a new
crash or coverage. Then it synchronizes the local feedback information, including the coverage and
crashes information, into the global server in a thread-safe manner to guides further fuzzing.

Algorithm 5: Feedback Collection of the Executor
Input: 𝑃 : Program
Input: 𝐵: Global Crash
Output: 𝑖𝑛𝑓 𝑜 : Execution Information

1 Procedure ProgExec(𝑃 , task)
2 info = run(𝑃)
3 if info.crash != ∅ then
4 if Lock(𝐵) & info.crash ⊄ 𝐵 then
5 𝐵 = 𝐵 ∪ info.crash
6 unLock(𝐵)

7 else
8 crashInfo = ∅
9 localCover = info.cover

10 if Lock(𝐶) & info.cover ⊄ 𝐶 then
11 𝐶 = 𝐶 ∪ info.cover
12 unLock(𝐶)
13 return info

Algorithm 5 demonstrates the feedback collection mechanism of the local executor. Each local
executor first executes the program, as shown in line 2. Then the executor determines if the program
triggers any crash. If Rtkaller triggers a new crash, it will return the crash information and save
the task that triggers the crash as interesting, as shown in lines 3-8. Finally, we check whether
the current program has found new paths. If new paths exist, we synchronize them to the global
coverage recorder 𝐶𝑜𝑣𝑒𝑟 and mark the current task as interesting, as shown in lines 9-13.

3.4 Implementation
We implement the targeting instrumentation in Python and implement Rtkaller in Golang, on
top of Syzkaller. For kernel’s instrumentation, Rtkaller first uses a real-time code aware script to
analyze the RTOS’s codebase. In detail, apart from the library and memory management function
that a general operating system has, the RTOS has some code to handle real-time requirements
like task switching. For instance, the PREEMPT_RT patch modified many files in the Linux kernel,
allowing it introduces real-time capabilities to a general operating system. Our script will iterate
the entire kernel codebase and identifies files that are related to real-time functionality. Based
on the results, Rtkaller applies Breadth-First Search (BFS) algorithm to modify the kernel’s
build configurations, specify to be instrumented files. It is noteworthy that the kernel forbids
the instrumentation of certain files, as it may introduce non-deterministic behaviors or generate

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:13

uninteresting code coverage. Hence, we avoid instrumentation on these files during compile time.
For task initialization, we modified the program generation algorithm on Syzkaller, which enabled
Rtkaller to generate tasks and convey more real-time information. For task generation, we extend
the program mutation methodology so that Rtkaller can simultaneously handle the mutation
of multiple programs within a task. We add a task modification strategy for task modification
to maintain each program’s runtime state during fuzzing automatically. We implement a fork
server-like architecture for parallel execution, which allows the fuzzer to spawn multiple executors
in multi-thread. We also use a bitset to prevent the fuzzer from crash due to pid conflict. The fuzzer
dispatches test cases to each executor, which executes these test cases separately. Then Rtkaller
synchronous the execution results, such as the crash reports and coverage information, back to the
fuzzer to guide further task generation.

4 EVALUATION
We evaluated the effectiveness of Rtkaller on the latest versions of the rt-Linux kernel, which
is a widely used RTOS. Two widely used state-of-the-art kernel fuzzers are used for comparison:
Syzkaller and Moonshine, where Syzkaller is developed by Google and Moonshine is an incremental
version of Syzkaller with a seed distillation strategy. We answer the following questions:

• RQ1: Can Rtkaller improve the code coverage during fuzzing?
• RQ2: Can Rtkaller improve the vulnerability detection ability?
• RQ3: Is the modification mechanism effective in reducing task hang?

4.1 Experiment setup
Data Set. We select several versions (ranging from the latest 5.9-release to the old 3.1-release) of
the rt-Linux kernel as the data set, as shown in Table 1. First, we make a fuzzing performance
comparison, mainly focus on the code coverage improvement. Second, we measure the effectiveness
of the task modification mechanism of Rtkaller by recording the total hanged task cases during
fuzzing. Last, we demonstrate Rtkaller’s ability of identifying vulnerabilities.

Table 1. Data Set for Performance Comparison

RTOS Versions Release Date Rt-patch Versions Line of Code
3.10-release 2013-03-06 patch-3.10.108-rt123 11402.8k
4.14-release 2017-12-12 patch-4.14.103-rt55 17049.8k
5.0-release 2019-03-03 patch-5.0.7-rt4-rt5 18030.8k
5.2-release 2019-07-07 patch-5.2-rt1 18335.6k
5.4-release 2019-11-24 patch-5.4.3-rt1 19297.4k
5.6-ktsan 2020-09-17 patch-5.6.4-rt2-rt3 18866.1k
5.6-release 2019-03-29 patch-5.6-rt1 19752.0k
5.9-release 2020-10-11 patch-5.9-rc7-rt10 20746.1k

Environment Setting. We conduct the experiments on an Intel(R) Xeon(R) CPU with 128G
RAM that runs Ubuntu 20.04 as the host kernel. We compile the data set with the same configuration
under the x86_64 architecture. All fuzzers are augmented with Kernel AddressSANitizer (KASAN)
[13] , which is a dynamic memory error monitor, to detect memory corruption (e.g. stack-overflow,
buffer-overflow and use-after-free). Each experiment was conducted for 24 hours and repeated

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:14 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

with 10 times. Rtkaller uses the identical initial syscall SPEC as Syzkaller 2, and for Moonshine,
we perform the distillation algorithm on these syscall SPEC to obtain a refined fuzzing input.

4.2 Effectiveness in Coverage Exploration
We answer RQ1 in terms of the branch coverage. To minimize the randomness of the results,
we repeated each 24-hour experiment 10 times. We collected execution information, including
timestamps and the amount of branch per minute. Then, we computed the average coverage of
Syzkaller, Moonshine, and Rtkaller over the 10 rounds of experiments.

Table 2. Average Coverage and Speed Improvement of 10 repeated experiments of the 8 versions

RTOS Versions Syzkaller Moonshine Rtkaller average-impr speedup
3.10-release 70597.8 68811.7 76566.4 8.5%/11.3% +2.1x/+1.8x
4.14-release 55713.4 71789.2 107599.8 93.1%/49.9% +2.0x/+1.6x
5.0-release 99694.2 109655.0 150821.4 51.3%/37.5% +1.5x/+1.7x
5.2-release 216589.7 212443.6 245302.6 13.3%/15.5% +1.5x/+1.4x
5.4-release 117011.6 119548.8 123333.4 5.4%/3.2% +1.6x/+1.7x
5.6-ktsan 107028.4 109672.2 192071.8 79.5%/75.1% +2.2x/+2.0x
5.6-release 123369.4 124085.4 126616.1 2.63%/2.04% +1.2x/+1.3x
5.9-release 121085.2 125784.4 127003.6 4.89%/0.97% +1.5x/+1.1x
average 113886.2 117723.8 143664.4 26.1%/22.0% +1.7x/+1.6x

Table 2 demonstrates the statistic improvements of code coverage and fuzzing speed. For each
rt-Linux version, we list the average branch coverage of Syzkaller, Moonshine, and Rtkaller. From
the table, we can find that compared with Syzkaller and Moonshine, Rtkaller covers 26.1% and
22.0% more branches, respectively. The main reason for this improvement is that the task ini-
tialization and the task generation approaches enable Rtkaller to spawn more real-time related
operations within RTOS. In this way, we can find more execution paths caused by real-time related
operations, which are usually hard to trigger in Syzkaller and Moonshine. Besides, from the ta-
ble, we notice that compared with Syzkaller and Moonshine, Rtkaller can gain about 1.7X and
1.6X speedup in terms of fuzzing speed; this statistic is calculated by comparing the time con-
sumption of Rtkaller to reach the final coverage of Syzkaller and Moonshine. Benefiting from
the parallel execution, Rtkaller can execute multiple programs simultaneously, which allows it
to have a higher throughput; also, the task modification algorithm prevent Rtkaller to generate
inferior test cases, thus significantly increase the fuzzing efficiency.
Fig. 5 shows the detailed coverage change over time. Rtkaller is able to achieve a higher

branch coverage than Syzkaller and Moonshine at a faster speed. All of them grow rapidly at the
beginning.However, during some periods, the experiments’ growth curve will stop, especially for
the results of 4.14-release and 5.6-ktsan. This is due to Syzkaller’s reproduction mechanism. In
detail, when a crash is detected, Syzkaller will try to reproduce it to identify if it is a real crash;
nevertheless, if such a crash is a false crash and is not reproducible, the fuzzer might waste a long
time in the reproduction phase.

The task modification mechanism enables Rtkaller to minimize such impact. As we can see from
the results of 5.2-release, Rtkaller has a fewer reproduction period than Syzkaller and Moonshine.

2The detail of the syscall SPEC can be found at https://github.com/google/syzkaller/tree/master/sys/linux

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:15

From the above results, it is reasonable to conclude that Rtkaller outperforms Syzkaller and
Moonshine in coverage exploration and speed when fuzzing RTOS.

(a) 3.10-release (b) 4.14-release (c) 5.0-release (d) 5.2-release

(e) 5.4-release (f) 5.6-ktsan (g) 5.6-release (h) 5.9-release

Fig. 5. Covered Branch - Rtkaller is able to cover more branches with a faster speed.

4.3 Effectiveness in Vulnerability Exposure
We answer RQ2 about the potential of Rtkaller on vulnerability detection. Specifically, Rtkaller
found a total of 142 vulnerabilities, while Syzkaller detected 103 vulnerabilities and Moonshine
detected 108 vulnerabilities. In total, with the overlap among the vulnerabilities found by the 3
tools, Rtkaller found 28 more vulnerabilities than the union set of Moonshine and Syzkaller (114).
Fig.6 demonstrates the vulnerabilities detected by each tool. The results show that 3.10-release
contains most of the vulnerabilities, due to the fact that it appeared relatively early and did not
undergo extensive security checks.

38

11 12 11

4

17

3

7

40

19

10
8

4

18

4 5

42

19

15

11
8

29

4

14

0

5

10

15

20

25

30

35

40

45

3.10-release 4.14-release 5.0-release 5.2-release 5.4-release 5.6-ktsan 5.6-release 5.9-release

Syzkaller Moonshine Rtkaller

Fig. 6. Vulnerabilities Statistics Compared with Syzkaller, and Moonshine

Table 3 shows those extra vulnerabilities that are only located by Rtkaller, including the
corresponding module, operation, and impact of each unique vulnerability. Although Syzkaller has
been endlessly testing the Linux kernel, these 28 vulnerabilities have not been reported before.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:16 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

Table 3. Previous Unknown Vulnerabilities Located by Rtkaller Uniquely

RTOS
Versions

Module Operation Vulnerability

3.10-release net/core/dev.c dev_remove_pack NULL ptr deref
arch/x86/kernel/cpu/
perf_event_intel.c

intel_shared_
reg_put_constraints

NULL prt deref

5.0-release include/linux/rbtree.h rb_insert_color_cached() general protection fault
fs/dcache.c list_lru_add() NULL prt deref
fs/debugfs/file.c debugfs_remove() use after free

5.4-release kernels swapgs_restore_regs() stack overflow
kernel/relay.c relay_alloc_buf() deadlock
drivers/vt_ioctl.c vt_ioctl() general protection fault
fs/proc/proc_sysctl.c count_subheaders() general protection fault

5.9-release driver/tty/vt/vt.c vc_con_write_normal() use after free
include/linux/mm.h vma_interval_tree_iter_next() general protection fault
drivers/video/
console/vgacon.c

clear_buffer_attributes() use after free

lib/vsprintf.c vsnprintf() Bad page map
mm/interval_tree.c anon_vma_interval_tree_insert() NULL prt deref
kernel/sched/swait.c swake_up_all_locked() possible system lock
drivers/tty/vt/vt.c complement_pos() use after free

5.6-ktsan mm/slub.c freelist_dereference() stack segment fault
lib/find_bit.c find_next_and_bit() general protection fault
lib/idr.c idr_get_free() general protection fault
net/ipv4/route.c ipv4_dst_check() general protection fault
net/ipv6/addrlabel.c ip6addrlbl_net_exit() general protection fault
fs/kernfs/file.c kernfs_notify_workfn() general protection fault
mm/slub.c __kmalloc() general protection fault
mm/slub.c kmem_cache_alloc() general protection fault
mm/shmem.c shmem_file_read_iter() rcu detected stall
fs/proc/proc_sysctl.c unregister_sysctl_table() stack segment fault
security/selinux/avc.c avc_node_delete() stack segment fault

Besides, we analyzed the cause of each vulnerability. With the support of parallel execution,
Rtkaller successfully located a large amount of kernel hangs issues; also, under the help of the
KASAN, the majority of detected vulnerabilities were memory corruption like use-after-free and
stack segmentation fault. In summary, 30.6% were memory errors detected with the aid of KASAN.
52.2% were bugs in the execution of system calls, and 17.2% were deadlock issues.
Though Rtkaller incorporates scheduler-specific concepts and techniques, Rtkaller aims to

trigger memory-related bugs extensively found in RTOS, with the help of kernel address sanitizer.
Hence, most of the detected vulnerabilities spread across the entire RTOS, rather than the scheduler
component alone. Also, Rtkaller’s testing inputs and oracles are significantly different from those
of scheduler testing. Specifically, scheduler testing requires generating periodic, sporadic, and

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:17

aperiodic tasks with representative properties to verify its correctness (i.e., finding timing bounds
violations) and performance (i.e., statistical timing behavior and resilience). Testing an entire RTOS,
as presented in Rtkaller, requires generating more generic tasks to detect vulnerabilities in the
implementation (i.e., memory access violations). Rtkaller collects comprehensive feedback from
the entire real-time-relevant code (i.e., rt-patch), not just the scheduler itself.

4.4 Effectiveness in Task Hang Reduction
Here we answer the RQ3 about the effectiveness of the task modification mechanism in reducing
task hang. We further implemented Rtkaller- , a trimmed version of Rtkaller without the task
modification mechanism. During experiments, we record the total number of test cases that get
hang from each experiment. Table 4 shows a comparison between Rtkaller and Rtkaller-.

Table 4. Task Hang Statistic Compared with Rtkaller-

RTOS Versions Rtkaller- Rtkaller Improvement
3.10-release 13.4 6.9 48.5%
4.14-release 13 0 100.0%
5.0-release 6.6 1.4 78.8%
5.2-release 10.8 7.2 33.3%
5.4-release 32.2 23.9 25.8%
5.6-ktsan 7.8 1.9 74.7%
5.6-release 8.5 6.1 28.2%
5.9-release 15.5 10.4 32.9%
average 13.4 7.8 41.8%

The result shows that Rtkaller reduces about 41.8% test cases hang on average. Especially
for 4.14-release, Rtkaller successfully ensures that no test cases hang. This is due to Rtkaller
successfully locating all syscalls that could trigger the process to hang and automatically modifies
them. For others, it reduces about 25%-79%, which means that Rtkaller manages to locate and
modify some of the damaged test cases. Since the modification relations are manually pre-defined,
we cannot cover all potentially dangerous system call pairs. This is why Rtkaller still has hang
due to the real-time operations. Our experiment results show that the task modification mechanism
does play an essential part in helping fuzzer generate higher-quality test cases.

4.5 Real Vulnerability Case Study
Kernel RSS Count Error. Resident Set Size (RSS) is used to indicate the amount of memory
allocation to the processes. When a user process is terminated, the kernel will clean up the process’s
memory. Before cleanup the memory space, the kernel will check the process’s page table; when it
finds a corrupted page table, such a bug may occur. Listing 4 shows an example of the RSS count
state error triggered by Rtkaller in kernel’s locking module when fuzzing the rt-Linux version
v5.2-release; this module is responsible for resources allocation. After analyzing the kernel bug
report, we locate the vulnerability’s source, a failed memory-free operation.
As Listing 4 shows, the shmem_lock function tries to gain access to a critical resource via

user_shm_lock in a multi-thread scenario. It will eventually call the rt_spin_lock function within
the kernel’s locking module. In general, if a process fails to use spin_lock to gain access to critical
resources, it will remain in a busy loop. However, when the delay exceeds the time limit for soft
interrupts, the process may exit before all resources are freed, resulting in page corruption. When
the RTOS kernel performs the page checking, such an error is exposed.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:18 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

Listing 4. Vulnerable code of shmem_lock.

1 // in function shmem_lock
2 if (lock && !(info ->flags & VM_LOCKED)) {
3 if (! user_shm_lock(inode ->i_size , user))
4 goto out_nomem;
5 ...
6 }
7 if (!lock && (info ->flags & VM_LOCKED) && user) {
8 user_shm_unlock(inode ->i_size , user);
9 ...
10 }
11
12 void __lockfunc rt_spin_lock(spinlock_t *lock)
13 {
14 sleeping_lock_inc ();
15 rcu_read_lock ();
16 migrate_disable ();
17 //Bug Occurs Here
18 spin_acquire (&lock ->dep_map , 0, 0, _RET_IP_);
19 rt_spin_lock_fastlock (&lock ->lock , rt_spin_lock_slowlock);
20 }

Kernel UAF Error. Use-after-free is usually a common yet troublesome issue in testing RTOS,
often due to the incorrect dynamic memory allocation; it usually refers to the attempt to access
memory after it has been freed. It potentially results in a program crash or the execution of arbitrary
code. In the kernel scenario, some attackers may use this kind of vulnerability to take over the
entire system. During fuzzing the rt-Linux version v5.2-release, Rtkaller successfully detects a
use-after-free vulnerability in the memory module with the help of KASAN. After analyzing the
bug report provided by Rtkaller, we located the vulnerability root cause, it is caused by a pointer
passing in memory allocation.
As Listing 5 shows, the slab_post_alloc_hook function tries to tag each allocated memory in

lines 4 - 10. The kernel uses kasan_slab_alloc, as shown in line 6, to allocate memory space.
However, suppose it tries to allocate a large space. In that case, the memory allocation may fail,
and these allocated memories will get freed. Nevertheless, in concurrent execution, the kernel calls
kmemleak_alloc_recursive as shown in line 8; due to the lack of checking for memory lock, these
previously freed memories are passed without freed resulting in a use-after-free situation. Malicious
attackers may utilize such vulnerability. By inserting a well-designed program jump instruction
address at the specific location of a data buffer, the attacker can achieve an arbitrary code execution,
then acquire a higher system privilege or bypass some security checks in the kernel.

Listing 5. Vulnerable code of slab_post_alloc_hook.

1 // in function slab_post_alloc_hook
2 size_t i;
3 flags &= gfp_allowed_mask;
4 for (i = 0; i < size; i++)
5 {
6 p[i] = kasan_slab_alloc(s, p[i], flags);
7 /*The Kernel Bug Occurs Here. */
8 kmemleak_alloc_recursive(p[i],
9 s->object_size , 1, s->flags , flags);
10 }

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:19

4.6 Threats to validity
The first potential threat is the scalability of Rtkaller. Although the data set in this paper is the
most recent version of rt-Linux, the methodology is feasible for most RTOS. For one thing, as
the algorithms are independent of the implementation of target RTOS, the task generation and
instrumentation modules that run in the host operating system are implemented in GoLang and
Python, while the test case executor running within the guest kernel is written in C++, which is
easily portable. In addition, Rtkaller uses tasks, which are the basic execution units of RTOS, as
fuzzing interface. Therefore, to support other RTOS, the extra work is to prepare corresponding task
descriptions for target RTOS. By adding additional task descriptions and modifying the Rtkaller’s
execution module to support task simulation, we have successfully adapted Rtkaller on Erika
fuzzing, and found a previously unknown vulnerability, demonstrated in the Github website.

The second is the performance bottleneck caused by the incompleteness of fuzzing. The current
fuzzing performance is limited by less refined seeds and the mono vulnerability detection approach.
In concrete, despite that Rtkaller adopts the coverage-guided task mutation strategy to generate
higher quality test cases, the current seed generation strategy still has trouble generating more
refined test cases. Specifically, different syscalls may have potential dependencies, where some
syscalls might depend on the result of previous syscalls. However, Rtkaller cannot accurately
perceive this syscall relations. Such implicit relations can result in fuzzer producing many invalid
seeds, failing to reach better coverage. Hence, we can further improve Rtkaller by augmenting
the task modification module to automatically learn such syscall relations, or leveraging more
runtime feedback as guidance (i.e., thread information, memory operations), thus achieving better
coverage. Moreover, as for the insufficient bug detection ability, Rtkaller mainly uses KASAN
for vulnerability detection, which may limit the detected vulnerabilities mostly on memory cor-
ruption. To further improving the bug detection ability, we can adapt more customized detection
strategies [10, 14, 19] or adapt more bug monitors [22, 27] to support detecting more bug types.

5 RELATEDWORK
5.1 Traditional Fuzz Testing
With the growing promise of fuzzing techniques for vulnerability detection, more and more
researchers have focused on probing the potential of fuzzing techniques to ensure software security.

For the generation-based fuzzers [3, 5, 26, 29, 32], their core purposes are that fuzz applications
have strict format requirements. They use the input format specifications to generate high-quality
test cases and guide further fuzzing according to the execution results. Peach [32] is a generation-
based fuzzers widely known for outstanding performance on protocol fuzzing. It defines a format
specification, which contains twomain models. The data model describes the protocol data structure,
while the state model describes how the fuzzer should communicate with the program under test. By
far, Peach has located many critical vulnerabilities in various protocols, and many related works try
to extend Peach’s fuzzing capabilities. Peach* [26] augments Peach with coverage feedback ability
and modifies Peach’s mutation strategy by introducing seed fragment replacement mechanism,
significantly improves Peach’s efficiency.

For mutation-based fuzzers, they mainly unitize their diverse mutation strategies to test programs
more efficiently. One of the most successful mutation-based fuzzers is American Fuzzy Lop (AFL).
AFL has detected thousands of bugs in a wide range of applications, known for its ease-of-use and
exceptional performance. Other AFL family tools [9, 18, 20, 21, 24] apply a variety of strategies to
boost the fuzzing process. AFL-fast [9] uses search strategies that enable fuzzer to focus on the
paths that are less executed. AFL-smart [23] combines the structured input components of Peach
with the grep-box fuzzing of AFL.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

17:20 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

For domain-specific fuzzers, such as for multi-threaded programs, due to their non-deterministic
behavior during runtime, many works attempt to introduce thread intervention techniques to
better understand the program’s internal state, thus improve the fuzzing efficiency and locates
more concurrent bugs such as data race or thread-leak. MUZZ [28] uses additional instrumentation
to provide more accurate thread information to guide the seed generation. ConAFL [16] combines
static analysis with fuzzing; it can manipulate the thread scheduling, and locate more concurrent
vulnerabilities in multi-threaded programs. Compared to multi-threaded programs that attempt to
use thread intervention techniques to guide fuzzing, Rtkaller is designed to locate various vulner-
abilities throughout the RTOS. It achieves the parallel execution, enabling a better compatibility
with task-based input and triggers more real-time related operations in the target RTOS, thereby
improving the fuzzing efficiency and simulating a more realistic execution scenario.

5.2 Kernel Fuzz Testing
Due to the tremendous amount of code in the kernel and the importance of kernel security, more
researchers are applying fuzzing tools to kernel testing. However, there are many difficulties in
porting traditional fuzzers to kernel fuzzing, such as the complexity of syscalls and the gap in
coverage collection mechanisms between applications and operating systems.
Trinity [6] is one of the first tools to use fuzzing techniques in kernel testing. The Trinity can

expose those deeply buried kernel bugs by providing semi-intelligent arguments to a syscall being
called. In detail implements a file descriptors pool, when a syscall requires a file descriptor, it will
arbitrarily select one from the pool. Also, it shares the descriptor pool between threads, with the
attempts to trigger more system crashes.
Syzkaller is a kernel fuzzing tool developed and maintained by Google. As one of the most

state-of-the-art kernel fuzzing tools, it has explored many severe kernel bugs and can fuzz a wide
range of kernels. It mainly uses the predefined system call descriptions to modeling the operating
systems’ interfaces. Then, Syzkaller compiles the descriptions into internal representations and
performs the fuzzing process. Syzkaller is highly extendable; many academic researchers optimize
fuzzing effectiveness by integrating other kernel validation techniques. For instance, Moonshine is
proposed to distill the initial seeds of kernel fuzzer by tracing the sequences of system call when
executing Linux test suites and performing the light-weight static analysis on the kernel source
code. By far, Moonshine has successfully discovered many new Linux kernel vulnerabilities.
Despite that Rtkaller was extended from general kernel fuzz, the main difference between

them reflects in the test case generation and the execution stage. In detail, to be compatible with
RTOS fuzzing, Rtkaller proposes using tasks as fuzzing inputs. To better simulate real-world
situations, Rtkaller emphasizes real-time operation triggering and adopts parallel execution to
improve vulnerability detection efficiency.

5.3 RTOS Validation
RTOS has shown its growing importance in a wide range of industrial scenarios. Except for the
traditional unit test approach [1], Ling Fang [4] proposes a formal model-based test method. It
first constructs an abstract model based on the AUTOSAR standard. With a complete test suite
generator, it then automatically starts the test process and verifies real-time operating systems that
conform to the AUTOSAR standard. Instead of using AUTOSAR standard, Jean-Luc [15] constructs
a complete model for OSEK standard and performs the conformance check based on the complete
model. However, these methods cannot avoid the common pitfalls of formal verification, such as
state explosion, excessive modeling time and lack of oracles and properties to be verified. These
limitations are particularly prominent in operating systems, which makes it hard for real industry

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

Rtkaller: State-aware Task Generation for RTOS Fuzzing 17:21

practice. Different from them, Rtkaller implements a task based kernel fuzzing framework, for
the automatic vulnerability detection of RTOS.

6 CONCLUSION
In this paper, we present Rtkaller, a state aware fuzzer for the vulnerability detection of the real-
time operating system. Rtkaller performs a task-based fuzzing, which gives real-time code section
in RTOS a higher chance of executing and thus expose more vulnerabilities. We evaluate Rtkaller
on 8 different versions of rt-Linux. Compared with Syzkaller and Moonshine, Rtkaller is able to
achieve higher code coverage at a faster speed and expose more bugs. Within the 142 confirmed
bugs, 28 are previously unknown. In future studies, we plan to extend Rtkaller to support more
RTOS and further improve the test case quality and diversity with relation learning.

ACKNOWLEDGEMENTS
We would also like to thank the anonymous reviewers for their valuable comments and input to
improve our paper. This research is sponsored in part by the NSFC Program (No. 62022046) and
National Key Research and Development Project (Grant No. 2019YFB1706203) and Key Research
and Development Plan in Jiangxi Province Department of Science and Technology under Grant
No.20171ACE50025.

REFERENCES
[1] Manthos A Tsoukarellas, Vasilis C Gerogiannis, and Kostis D Economides. 1995. Systematically testing a real-time

operating system. IEEE Micro 15, 5 (1995), 50–60.
[2] Michael Barabanov. 1997. A linux-based real-time operating system. New Mexico Institute of Mining and Technology

Socorro, New Mexico, USA.
[3] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based Whitebox Fuzzing. In Proceedings of the

29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08).
Association for Computing Machinery, New York, NY, USA, 206–215. https://doi.org/10.1145/1375581.1375607

[4] Ling Fang. 2012. Formal Model-Based Test for AUTOSAR multicore RTOS. http://icst2012.soccerlab.polymtl.ca/
Presentation_Slides/LingFang.pdf.

[5] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In Proceedings of the 21st
USENIX Conference on Security Symposium (Bellevue, WA) (Security’12). USENIX Association, USA, 38.

[6] Dave Jones. 2012. Trinity: Linux system call fuzzer. https://github.com/kernelslacker/trinity.
[7] Michal Zalewski. 2014. American Fuzzy Lop (2.52b). https://lcamtuf.coredump.cx/afl.
[8] Dmitry Vyukov. 2015. Syzkaller: an unsupervised, coverage-guided kernel fuzzer. https://github.com/google/syzkaller.

Accessed April 26, 2019.
[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-Based Greybox Fuzzing as Markov Chain.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[10] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA, 920–932. https:
//doi.org/10.1145/2976749.2978366

[11] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344. https://doi.org/10.1145/3133956.3134020

[12] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC, 167–182. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/schumilo

[13] Linux Kernel Developers. 2017. The kernel address sanitizer (KASAN)—the Linux kernel documentation. https:
//www.kernel.org/doc/html/latest/dev-tools/kasan.html

[14] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check It Again: Detecting Lacking-Recheck Bugs in OS Kernels.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

https://doi.org/10.1145/1375581.1375607
http://icst2012.soccerlab.polymtl.ca/Presentation_Slides/LingFang.pdf
http://icst2012.soccerlab.polymtl.ca/Presentation_Slides/LingFang.pdf
https://github.com/kernelslacker/trinity
https://lcamtuf.coredump.cx/afl
https://github.com/google/syzkaller
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/3133956.3134020
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

17:22 Y Shen, H Sun, Y Jiang, Y Yang, W Chang, and H Shi

’18). Association for Computing Machinery, New York, NY, USA, 1899–1913. https://doi.org/10.1145/3243734.3243844
[15] Jean-Luc Béchennec, Olivier Henri Roux, and Toussaint Tigori. 2018. Formal model-based conformance verification of

an OSEK/VDX compliant RTOS. In 2018 5th International Conference on Control, Decision and Information Technologies
(CoDIT). IEEE, Thessaloniki, Greece, 628–634. https://doi.org/10.1109/CoDIT.2018.8394813

[16] Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin. 2018. A Heuristic Framework to Detect Concurrency
Vulnerabilities. In Proceedings of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA) (ACSAC
’18). Association for Computing Machinery, New York, NY, USA, 529–541. https://doi.org/10.1145/3274694.3274718

[17] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing OS Fuzzer Seed Selection with Trace
Distillation. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 729–743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang Sun. 2018. PAFL: Extend Fuzzing
Optimizations of Single Mode to Industrial Parallel Mode. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).
Association for Computing Machinery, Lake Buena Vista, FL, USA, 809–814.

[19] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. 2018. Precise and Scalable Detection of Double-Fetch Bugs in OS
Kernels. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA.
https://doi.org/10.1109/SP.2018.00017

[20] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun. 2018. SAFL:
Increasing and Accelerating Testing Coverage with Symbolic Execution and Guided Fuzzing. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 61–64. https://doi.org/10.1145/3183440.3183494

[21] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun. 2019. FIRM-AFL: High-
Throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emulation. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1099–1114. https://www.usenix.org/conference/
usenixsecurity19/presentation/zheng

[22] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding Kernel
Race Bugs through Fuzzing.. In IEEE Symposium on Security and Privacy. IEEE, San Francisco, CA, USA, 754–768.
http://dblp.uni-trier.de/db/conf/sp/sp2019.html#JeongKSLS19

[23] Van-Thuan Pham, Marcel Boehme, Andrew Edward Santosa, Alexandru Razvan Caciulescu, and Abhik Roychoudhury.
2019. Smart Greybox Fuzzing. IEEE Transactions on Software Engineering 1, 1 (2019), 1–1. https://doi.org/10.1109/TSE.
2019.2941681

[24] J. Gao, Yiwen Xu, Yu Jiang, Zhe Liu, Wanli Chang, Xun Jiao, and Jiaguang Sun. 2020. EM-Fuzz: Augmented Firmware
Fuzzing via Memory Checking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39
(2020), 3420–3432.

[25] Patrice Godefroid. 2020. Fuzzing: Hack, Art, and Science. Commun. ACM 63, 2 (Jan. 2020), 70–76. https://doi.org/10.
1145/3363824

[26] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu Jiang. 2020. ICS Protocol Fuzzing: Coverage
Guided Packet Crack and Generation. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference (DAC
’20). IEEE Press, Virtual Event, USA, Article 223, 6 pages.

[27] M. Xu, S. Kashyap, H. Zhao, and T. Kim. 2020. Krace: Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1643–1660. https://doi.org/10.1109/
SP40000.2020.00078

[28] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu. 2020.
MUZZ: Thread-aware Grey-box Fuzzing for Effective Bug Hunting in Multithreaded Programs. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Virtual Event, USA, 2325–2342. https://www.usenix.org/
conference/usenixsecurity20/presentation/chen-hongxu

[29] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang, and Yu Jiang. 2021. Industry Practice
of Coverage-Guided Enterprise-Level DBMS Fuzzing. 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP) 1, 1 (2021), 328–337.

[30] Wikipedia contributors. 2021. RTLinux. https://en.wikipedia.org/wiki/RTLinux
[31] Richard Barry. Accessed 2003. FreeRTOS. Website. https://www.freertos.org/.
[32] Tool. Accessed April 5th, 2019. Peach Fuzzing Platform. Website. https://www.peach.tech.
[33] NVD. Accessed Jun 5th, 2018. CVE-2018-1000200. Website. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2018-1000200.
[34] google. Accessed May 14th, 2018. syzbot. Website. https://syzkaller.appspot.com/upstream.
[35] SimonKagstrom. Accessed Nov 1st 2010. kcov. Website. https://github.com/SimonKagstrom/kcov.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 17. Publication date: July 2021.

https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1109/CoDIT.2018.8394813
https://doi.org/10.1145/3274694.3274718
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1145/3183440.3183494
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
http://dblp.uni-trier.de/db/conf/sp/sp2019.html#JeongKSLS19
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://en.wikipedia.org/wiki/RTLinux
https://www.freertos.org/
https://www.peach.tech
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000200
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000200
https://syzkaller.appspot.com/upstream
https://github.com/SimonKagstrom/kcov

	Abstract
	1 Introduction
	2 Background
	2.1 Real-time Operating System
	2.2 Coverage-guided Kernel Fuzzing
	2.3 Challenges of RTOS Fuzzing

	3 System Design
	3.1 Task Initialization
	3.2 Task Generation
	3.3 Parallel Execution
	3.4 Implementation

	4 Evaluation
	4.1 Experiment setup
	4.2 Effectiveness in Coverage Exploration
	4.3 Effectiveness in Vulnerability Exposure
	4.4 Effectiveness in Task Hang Reduction
	4.5 Real Vulnerability Case Study
	4.6 Threats to validity

	5 Related Work
	5.1 Traditional Fuzz Testing
	5.2 Kernel Fuzz Testing
	5.3 RTOS Validation

	6 Conclusion
	References

